과정 안내

SNUON의 다양한 강좌들을 수강신청 후 수강하실 수 있습니다.

Collective Phenomena in Condensed Matter Physics (2017)


모집기간 : 2019-09-01 ~ 2020-02-29
학습기간 : 2019-09-01 ~ 2020-02-29
  • 강좌 정보 및 소개

    차시

    차시명

    학습 모듈

    1

    Many Body Systems 1

    1. Definition_1

    2. Definition_2

    3. Exchange interaction

    4. Summary

    2

    Many Body Systems 2

     

    1. Function of occupation numbers

    2. Annihilation and Creation Operators

    3. Relationships of above operators for Bosons

    4. Systems of Fermions and Summary

    3

    Long-range Order

     

    1. Amorphous Solid

    2. Crystals

    3. Ferromagnetic materials

    4. Correlation Function and summary

    4

    Phase Transition

     

    1. Concept of phase

    2. Phase diagram

    3. Phase transition

    4. Critical phenomena and summary

    5

    Ising Model and Related Systems

     

    1. Definition

    2. Discussion

    3. Few other models

    4. Summary

    6

    Electronic Quasiparticles

    1. Quasiparticles

    2. Effective mass

    3. Excitons

    4. Metal and the Fermi gas and summary

    7

    Bose-Einstein Condensate

    1. What is Bose-Einstein Condensate

    2. History behind BEC

    3. Characteristics of BEC

    4. Limitation & recent findings and summary

    8

    Heavy Fermions

    1. Introduction

    2. Properties

    3. Kondo effect

    4. Superconductivity in Heave Fermion system and summary

    9

    In class assignment 1

    1. Problem 1

    2. Problem 2,3

    3. Problem 4

    4. Problem 5,6,7

    10

    In class assignment 2

    1. problem 8

    2. Problem 9_1

    3. Problem 9_2

    4. Problem 10 and summary

    11

    Fermi Liquid 1

    1. Introduction to Fermi liquid

    2. Comparison between Fermi gas and Fermi liquid

    3. Non-Fermi liquid

    4. Summary

    12

    Fermi Liquid 2

     

    1. Many-body problem

    2. Ideal Fermi gas

    3. Landau's idea

    4. Summary

    13

    Introduction to Superconductivity 1

    1. Historical Overview

    2. Basic Phenomena

    3. Basic Characteristics

    4. Summary

    14

    Introduction to Superconductivity 2

    1. Why is superconductivity potential for the future applications

    2. More about Type I & Type II

    3. Class of High-Tc Superconductors

    4. Summary

    15

    BCS Theory 1 : Qualitative Features

    1. Screening

    2. Effective Electron-Electron Interaction

    3. Quantitative Features

    4. Summary

    16

    BCS Theory 2 : BEC of Cooper pairs

     

     

     

     

    1. Constructing Bosons from Fermions

    2. Cooper pairing

    3. Some other points

    4. In-class exercise and Summary

    17

    Ginzburg-Landau Theory

    1. Introduction

    2. The GL free-energy

    3. GL parameters and classification

    4. Summary

    18

    Josephson Junction

    1. Main idea

    2. How it can work?

    3. Application

    4. Summary

    19

    High-Tc superconductivity

     

    1. History

    2. Crystal structures of high Tc superconductors

    3. Properties

    4. Possible mechanism and Summary

    20

    Hubbard Model

     

    1. Introduction

    2. Theory

    3. 1-D case

    4. Summary

    21

    Mott insulators

     

    1. Definition

    2. Mott properties

    3. Mott metal-insulator transition

    4. Summary

    22

    Superfluidity

    1. Definition

    2. Ultracold atomic gases

    3. Behavior of superfluid phases

    4. Theoretical explanation and Summary

    23

    In-Class Exercise 3

    1. Assignment 1

    2. Assignment 2

    3. Assignment 3

    4. Assignment 4

    24

    In-Class Exercise 4

     

    1. Assignment 5_1

    2. Assignment 5_2

    3. Assignment 6

    4. Assignment 7

    25

    Review 1

    1. Many-body problem and Long-range order

    2. Phase transitions and Ising model

    3. Electronic Quasiparticles and Bose-Einstein Condensate

    4. Heavy Fermions and Fermi Liquid

    26

    Review 1

     

    1. Many-body problem and Long-range order

    2. Phase transitions and Ising model

    3. Electronic Quasiparticles and Bose-Einstein Condensate

    4. Heavy Fermions and Fermi Liquid

  • 교수 정보

  • 교수진 소개

    • 학력:

    Hanoi University 학사

    International Center for Theoretical Physics (ICTP) 석사

    Japan Advanced Institute of Science and Technology 박사

    • 주요경력:

    2001-2002: Research associate, Univ. of Leipzig, Germany

    2002-2004: Postdoc, Le Studium, CNRS, LEMA, Tours, France

    2004-2006: Visiting Researcher of CNRS (Poste rouge), LEMA, Tours, France

    2007-2008: High-Level Researcher of CNRS, LEMA, Tours, France

    2008-2009: fixed term Assistant Professor (ATER), Univ. of Tours, France

    2010 ~: Professor at Seoul National University

    • 주요저서:
    1. Chapter: Ferromagnetism in transition-metal-doped semiconducting oxide thin films

    Nguyen Hoa Hong In the book of “Condensed Matter: New Research” Edited by M. P. Das, Nova Publishing, New York, p 283- 295,

    ISBN-10: 1-60021-022-8 & ISBN-13: 978-1-60021-022-8 (2006).

    1. Chapter: Ferromagnetism in transition-metal-doped semiconducting oxide thin films

    Nguyen Hoa Hong In the book “Magnetism in semiconductingoxides” - Transworld Research Network, p 53- 67,

    ISBN: 81-7895-264-5 (2007).

    1. Chapter: Can undoped semiconducting oxides be ferromagnetic?

    Nguyen Hoa Hong In the book “Magnetism in semiconductingoxides” -Transworld Research Network, p 115-129,

    ISBN: 81-7895-264-5 (2007).

     

    • 주요논문:
    1. The origin of magnetism in transition-metal-doped ZrO2 thin films: experiment and theory

    Nguyen Hoa Hong, Mohammed Benali Kanoun, Souraya Goumri-Said, Jae-Hee Song , Ekaterina Chikoidze, Yves Dumont, Antoine Ruyter, and Makio Kurisu J. Phys.: Condens. Matter 25, 436003 (2013).

    1. Mesoporous silica with fibrous morphology: A multifunctional platform for biomedical applications

    T.S. Atabaev, J.H. Lee, J.J. Lee, D. W. Han, Y.H. Hwang, H.K. Kim and Nguyen Hoa Hong

    Nanotechnology 24, 345603 (2013) (highlighted as a feature article).

    1. Room temperature ferromagnetism with large magnetic moment at low field in Rare-Earth-doped BiFeO3 thin films

    Tae-Young Kim, Nguyen Hoa Hong, T. Sugawara, A. T. Raghavender, and M. Kurisu

    Journal of Physics: Condensed Matter 25, 206003 (2013).

    1. Oxygen vacancy induced ferromagnetism in undoped SnO2 thin films
    2. S. Chang, J. Forrest, E. Z. Kurmaev, A. N. Morozovska, M. D. Glinchuk, J. A. McLeod, A. Moewes, T. P. Surkova , and Nguyen Hoa Hong

    Physical Review B 85, 165319 (2012)

    1. A Room temperature ferromagnetism in monoclinic Mn-doped ZrO2 thin films Nguyen Hoa Hong,C-K. Park,A. T. Raghavender, O. Ciftja, N. S. Bingham, M. H. Phan, and H. Srikanth Journal of Applied Physics 111, 07C 302 (2012)
    2. Ferromagnetism in C-doped SnO2 thin films

    Nguyen Hoa Hong, J.-H. Song, A.T. Raghavender, T. Asaeda, and M. Kurisu Applied Physics Letters, 99, 052505 (2011)

  • 강좌코드 : 2019_80_D_2017_1_Hong_2019_2
  • 과정 : Collective Phenomena in Condensed Matter Physics
  • 주수 : 26
  • 수강가능수 : 100000
  • 학점 : 0
  • 언어 : 한국어 (ko)
  • 태그 :
이전페이지